

 [image: Documentation Status]
 [https://readthedocs.org/projects/r2b2][image: Travis-CI Build Status]
 [https://travis-ci.org/gwexploratoryaudits/r2b2][image: Requirements Status]
 [https://requires.io/github/gwexploratoryaudits/r2b2/requirements/?branch=master][image: Coverage Status]
 [https://codecov.io/github/gwexploratoryaudits/r2b2][image: Commits since latest release]
 [https://github.com/gwexploratoryaudits/r2b2/compare/v0.1.0...master][image: MIT License]
 [https://opensource.org/licenses/MIT]
Contents

Round-by-Round and Ballot-by-Ballot election audits: a workbench for exploration of risk-limiting audits.

	r2b2
	Subpackages

	Submodules

	Installation

	Usage

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.1.0 (2020-02-11)

Indices and tables

	Index

	Module Index

	Search Page

r2b2

Round-by-Round and Ballot-by-Ballot risk limiting audit library.

Subpackages

	r2b2.simulation
	r2b2.simulation.filip_athena

Submodules

	r2b2.__main__

	r2b2.athena

	r2b2.audit

	r2b2.brla

	r2b2.cli

	r2b2.contest

	r2b2.election

	r2b2.minerva

	r2b2.simulator

r2b2.simulation

R2B2 Simulations

Submodules

	r2b2.simulation.filip_athena

r2b2.simulation.filip_athena

Athena/Minerva Simulations using Filip Zagorski’s athena library.

Module Contents

	
class r2b2.simulation.filip_athena.FZMinervaOneRoundRisk(alpha, reported, sample_size, election_file, reported_name, db_mode=True, db_host='localhost', db_name='r2b2', db_port=27017, *args, **kwargs)

	Bases: r2b2.simulator.Simulation

Simulate a 1-round Minerva audit for a given sample size to compute risk limit.

	
trial(self, seed)

	Execute a 1-round minerva audit from Filip’s athena code.

	
analyze(self)

	Analyze the simulation trials.

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

r2b2.__main__

Entrypoint module, in case you use python -mr2b2.

Why does this file exist, and why __main__? For more info, read:

	https://www.python.org/dev/peps/pep-0338/

	https://docs.python.org/2/using/cmdline.html#cmdoption-m

	https://docs.python.org/3/using/cmdline.html#cmdoption-m

r2b2.athena

Athena audit module.

Module Contents

	
class r2b2.athena.Athena(alpha: float, delta: float, max_fraction_to_draw: float, contest: r2b2.contest.Contest)

	Bases: r2b2.audit.Audit

Athena audit implementation.

An Athena audit is a type of risk-limiting audit that accounts for round-by-round auditor
decisions. For a given sample size (in the context of a round schedule), the audit software
calculates a minimum number of votes for the reported winner that must be found in the sample
to stop the audit and confirm the reported outcome.

	Variables

	
	alpha (float) – Risk limit. Alpha represents the chance that, given an incorrectly called
election, the audit will fail to force a full recount.

	max_fraction_to_draw (float) – The maximum number of ballots the auditors are willing to draw
as a fraction of the ballots in the contest.

	delta (float) – Delta value.

Initialize an Athena audit.

	
get_min_sample_size(self, sub_audit: r2b2.audit.PairwiseAudit, min_sprob: float = 10 ** - 6)

	Computes the minimum sample size that has a stopping size (kmin). Here we find a
practical minimum instead of the theoretical minimum (BRAVO’s minimum) to avoid
floating-point imprecisions in the later convolution process.

	Parameters

	
	sub_audit (PairwiseAudit) – Compute minimum sample size for this subaudit.

	min_sprob (float) – Round sizes with below min_sprob stopping probability are excluded.

	Returns

	int – The minimum sample size of the audit, adherent to the min_sprob.

	
satisfactory_sample_size(self, left, right, sprob, num_dist, denom_dist)

	Helper method that returns True if the round size satisfies the stopping probability.

	
next_sample_size(self, *args, **kwargs)

	Generate estimates of possible next sample sizes.

Note: To be used during live/interactive audit execution.

	
stopping_condition_pairwise(self, pair: str, verbose: bool = False) → bool

	Check, without finding the kmin, whether the audit is complete.

	Parameters

	pair (str) – Dictionary key referencing pairwise subaudit. Evaluate the stopping
condition for this subaudit.

	Returns

	bool – Whether or not the pairwise stopping condition has been met.

	
next_min_winner_ballots_pairwise(self, sub_audit: r2b2.audit.PairwiseAudit) → int

	Compute stopping size for a given subaudit.

	Parameters

	sub_audit (PairwiseAudit) – Compute next stopping size for this subaudit.

	Returns

	int – Stopping size for most recent round.

	
compute_min_winner_ballots(self, sub_audit: r2b2.audit.PairwiseAudit, rounds: List[int], *args, **kwargs)

	Compute the minimum number of winner ballots for a round schedule.

Extend the audit’s round schedule with the passed (partial) round schedule, and then extend
the audit’s minimum number of winner ballots schedule with the corresponding minimums to
meet the stopping condition.

	Parameters

	
	sub_audit (PairwiseAudit) – Compute minimum winner ballots for this Pairwise subaudit.

	rounds (List[int]) – A (partial) round schedule of the audit.

	
find_kmin(self, sub_audit: r2b2.audit.PairwiseAudit, sample_size: int, append: bool)

	Search for a kmin (minimum number of winner ballots) satisfying all stopping criteria.

	Parameters

	
	sub_audit (PairwiseAudit) – Find kmin for this subaudit.

	sample_size (int) – Sample size to find kmin for.

	append (bool) – Optionally append the kmins to the min_winner_ballots list. This may
not always be desirable here because, for example, appending happens automatically
outside this method during an interactive audit.

	
compute_all_min_winner_ballots(self, sub_audit: r2b2.audit.PairwiseAudit, max_sample_size: int = None, *args, **kwargs)

	Compute the minimum number of winner ballots for the complete (that is, ballot-by-ballot)
round schedule.

	Note: Due to limited convolutional precision, results may be off somewhat after the
	stopping probability very nearly equals 1.

	Parameters

	
	sub_audit (PairwiseAudit) – Compute minimum winner ballots for this pairwise subaudit.

	max_sample_size (int) – Optionally set the maximum sample size to generate stopping sizes
(kmins) up to. If not provided the maximum sample size is determined by max_frac_to_draw
and the total contest ballots.

	Returns

	None, kmins are appended to the min_winner_ballots list.

	
compute_risk(self, votes_for_winner: int, pair: str, *args, **kwargs)

	Return the hypothetical (Minerva) p-value if votes_for_winner were obtained in the most recent
round.

	
get_risk_level(self)

	Return the risk level of an interactive Athena audit.

Non-interactive and bulk Athena audits are not considered here since the sampled number of
reported winner ballots is not available.

	
__repr__(self)

	String representation of Audit class.

Note

Can (and perhaps should) be overwritten in subclass.

	
__str__(self)

	Human readable string (i.e. printable) representation of Audit class.

Note

Can (and perhaps should) be overwritten in subclass.

	
current_dist_null(self)

	Update distribution_null for each sub audit for current round.

	
_current_dist_null_pairwise(self, sub_audit: PairwiseAudit, bulk_use_round_size=False)

	Update distribution_null for a single PairwiseAudit

	Parameters

	
	sub_audit (PairwiseAudit) – Pairwise subaudit for which to update distribution.

	bulk_use_round_size (bool) – Optional argument used by bulk methods. Since the bulk
methods do not sample ballots for candidates during the rounds, this flag simply
uses the round schedule as the round draw (instead of the pairwise round draw)
for updating the distribution. Default is False.

	
current_dist_reported(self)

	Update distribution_reported_tally for each subaudit for current round.

	
_current_dist_reported_pairwise(self, sub_audit: PairwiseAudit, bulk_use_round_size=False)

	Update dist_reported for a single PairwiseAudit.

	Parameters

	
	sub_audit (PairwiseAudit) – Pairwise subaudit for which to update distriution.

	bulk_use_round_size (bool) – Optional argument used by bulk methods. Since the bulk
methods do not sample ballots for candidates during the rounds, this flag simply
uses the round schedule as the round draw (instead of the pairwise round draw)
for updating the distribution. Default is False.

	
truncate_dist_null(self)

	Update risk schedule and truncate null distribution for each subaudit.

	
_truncate_dist_null_pairwise(self, pair: str)

	Update risk schedule and truncate null distribution for a single subaudit.

	Parameters

	pair (str) – Dictionary key for subaudit (within the audit’s subaudits) to truncate
distribution and update risk schedule.

	
truncate_dist_reported(self)

	Update stopping prob schedule and truncate reported distribution for each subaudit.

	
_truncate_dist_reported_pairwise(self, pair)

	Update stopping prob schedule and truncate reported distribution for a single subaudit.

	Parameters

	pair (str) – Dictionary key for subaudit (within the audit’s subaudits) to truncate
distribution and update stopping prob schedule.

	
__get_interval(self, dist: List[float])

	Get relevant interval [l, u] of given distribution.

Find levels l and u such that cdf(l) < tolerance and 1 - cdf(u) < tolerance. The purpose of
this is to improve efficiency in the current_dist_* functions for audits without
replacement where almost all of the hypergeometric distribution falls in a fraction of its
range, i.e. between l and u.

Note

cdf() in this context does not require cdf(infinity) = 1, although the distribution
should sum very closely to 1.

	
asn(self, pair: str)

	Compute ASN as described in BRAVO paper for pair of candidates.

Given the fractional margin for the reported winner and the risk limit (alpha) produce the
average number of ballots sampled during the audit.

	Parameters

	pair (str) – Dictionary key referencing pairwise audit in audit’s subaudits.

	Returns

	int – ASN value.

	
execute_round(self, sample_size: int, sample: dict, verbose: bool = False) → bool

	Execute a single, non-interactive audit round.

Executes 1 round of the audit, given its current state. If the audit is stopped, its
state will not be modified.

	Warning: This method assumes the audit is in the correct state to be executed. If multiple
	executions of a full audit will be run the same audit object, make sure to call reset
on the audit object between full executions.

	Parameters

	
	sample_size (int) – Total ballots sampled by the end of this round (cumulative).

	sample (dict) – Sample counts for each candidate by the end of this round (cumulative).

	Returns

	bool – True if the audit met its stopping condition by this round.

	
run(self, verbose: bool = False)

	Begin interactive audit execution.

Begins the interactive version of the audit. While computations for different audits will
vary, the process for executing each one is the same. This provides a process for selecting
a sample size, determining if the ballots found for the reported winner in that sample
size meet the stopping condition(s), and if not continuing with the audit. As the audit
proceeds, data including round sizes, ballots for the winner in each round size, and per
round risk and stopping probability are stored.

	
_reset(self)

	Reset attributes modified during run().

	
stopping_condition(self, verbose: bool = False) → bool

	Determine if the audits stopping condition has been met.

The audit stopping condition is met if and only if each pairwise stopping condition
is met.

	
next_min_winner_ballots(self, verbose: bool = False)

	Compute next stopping size of given (actual) sample sizes for all subaudits.

r2b2.audit

Abstract module defining an Audit framework.

Module Contents

	
class r2b2.audit.PairwiseAudit(sub_contest: r2b2.contest.PairwiseContest)

	Store audit information for pairwise comparison.

The PairwiseAudit class hold the audit data for a single pair of candidates.

	Variables

	
	sub_contest (PairwiseContest) – Pairwise contest data for relevant pair of candidates.

	min_sample_size (int) – The smallest valid sample size. The minimum round size where
kmin <= round

	risk_schedule (List[float]) – Schedule of risk assocaited with each previous round.
Corresponds to tail of null distribution.

	stopping_prob_schedule (List[float]) – Schedule of stopping probabilities associated
with each previous round. Corresponds to tail of reported tally distribution.

	pvalue_schedule (List[float]) – Schedule of pvalues associated with each previous round.
Corresponds to ratio of risk and stopping probability.

	distribution_null (Dict[str, List[float]]) – Current distribution associated with a tied
election for each pairwise subcontest.

	distribution_reported_tally (Dict[str, List[float]]) – Current distribution associated
with reported tally for each pairwise subcontest.

	min_winner_ballots (List[int]) – List of stopping sizes (kmin values) for each round.

	stopped (bool) – Indicates if pairwise audit has stopped.

	
__repr__(self)

	Return repr(self).

	
__str__(self)

	Return str(self).

	
get_pair_str(self)

	Get winner-loser pair as string used as dictionary key in Audit.

	
class r2b2.audit.Audit(alpha: float, beta: float, max_fraction_to_draw: float, replacement: bool, contest: r2b2.contest.Contest)

	Bases: abc.ABC

Abstract Base Class to define a general Audit object type.

The Audit class is an abstract base class which defines the general structure and properties
of a risk-limiting audit. Individual RLAs are subclasses of the Audit class.

	Variables

	
	alpha (float) – Risk limit. Alpha represents the chance that given an incorrectly called
election, the audit will fail to go to a full recount.

	beta (float) – the worst case chance of causing an unnecessary full recount. For many RLAs,
beta will simply be set to 0 and will not appear to be a parameter.

	max_fraction_to_draw (float) – The maximum total number of ballots auditors are willing to
draw during the course of the audit.

	replacement (bool) – Indicates if the audit sampling should be done with (true) or without
(false) replacement.

	rounds (List[int]) – List of round sizes (i.e. sample sizes).

	sample_ballots (Dict[str, List[int]]) – Dictionary mapping candidates to sample counts drawn
throughout audit. Sample counts are cumulative.

	pvalue_schedule (List[float]) – Schedule of pvalues for overall audit in each round. In
each round, the overall pvalue is the maximum pvalue of all subaudits.

	contest (Contest) – Contest on which to run the audit.

	sub_audits (Dict[str, PairwiseAudit]) – Dict of PairwiseAudits wthin audit indexed by loser.

	stopped (bool) – Indicates if the audit has stopped (i.e. met the risk limit).

Create an instance of an Audit.

Note

This should only be called when initializing a subclass as the Audit class is an
abstract class.

	
__repr__(self)

	String representation of Audit class.

Note

Can (and perhaps should) be overwritten in subclass.

	
__str__(self)

	Human readable string (i.e. printable) representation of Audit class.

Note

Can (and perhaps should) be overwritten in subclass.

	
current_dist_null(self)

	Update distribution_null for each sub audit for current round.

	
_current_dist_null_pairwise(self, sub_audit: PairwiseAudit, bulk_use_round_size=False)

	Update distribution_null for a single PairwiseAudit

	Parameters

	
	sub_audit (PairwiseAudit) – Pairwise subaudit for which to update distribution.

	bulk_use_round_size (bool) – Optional argument used by bulk methods. Since the bulk
methods do not sample ballots for candidates during the rounds, this flag simply
uses the round schedule as the round draw (instead of the pairwise round draw)
for updating the distribution. Default is False.

	
current_dist_reported(self)

	Update distribution_reported_tally for each subaudit for current round.

	
_current_dist_reported_pairwise(self, sub_audit: PairwiseAudit, bulk_use_round_size=False)

	Update dist_reported for a single PairwiseAudit.

	Parameters

	
	sub_audit (PairwiseAudit) – Pairwise subaudit for which to update distriution.

	bulk_use_round_size (bool) – Optional argument used by bulk methods. Since the bulk
methods do not sample ballots for candidates during the rounds, this flag simply
uses the round schedule as the round draw (instead of the pairwise round draw)
for updating the distribution. Default is False.

	
truncate_dist_null(self)

	Update risk schedule and truncate null distribution for each subaudit.

	
_truncate_dist_null_pairwise(self, pair: str)

	Update risk schedule and truncate null distribution for a single subaudit.

	Parameters

	pair (str) – Dictionary key for subaudit (within the audit’s subaudits) to truncate
distribution and update risk schedule.

	
truncate_dist_reported(self)

	Update stopping prob schedule and truncate reported distribution for each subaudit.

	
_truncate_dist_reported_pairwise(self, pair)

	Update stopping prob schedule and truncate reported distribution for a single subaudit.

	Parameters

	pair (str) – Dictionary key for subaudit (within the audit’s subaudits) to truncate
distribution and update stopping prob schedule.

	
__get_interval(self, dist: List[float])

	Get relevant interval [l, u] of given distribution.

Find levels l and u such that cdf(l) < tolerance and 1 - cdf(u) < tolerance. The purpose of
this is to improve efficiency in the current_dist_* functions for audits without
replacement where almost all of the hypergeometric distribution falls in a fraction of its
range, i.e. between l and u.

Note

cdf() in this context does not require cdf(infinity) = 1, although the distribution
should sum very closely to 1.

	
asn(self, pair: str)

	Compute ASN as described in BRAVO paper for pair of candidates.

Given the fractional margin for the reported winner and the risk limit (alpha) produce the
average number of ballots sampled during the audit.

	Parameters

	pair (str) – Dictionary key referencing pairwise audit in audit’s subaudits.

	Returns

	int – ASN value.

	
execute_round(self, sample_size: int, sample: dict, verbose: bool = False) → bool

	Execute a single, non-interactive audit round.

Executes 1 round of the audit, given its current state. If the audit is stopped, its
state will not be modified.

	Warning: This method assumes the audit is in the correct state to be executed. If multiple
	executions of a full audit will be run the same audit object, make sure to call reset
on the audit object between full executions.

	Parameters

	
	sample_size (int) – Total ballots sampled by the end of this round (cumulative).

	sample (dict) – Sample counts for each candidate by the end of this round (cumulative).

	Returns

	bool – True if the audit met its stopping condition by this round.

	
run(self, verbose: bool = False)

	Begin interactive audit execution.

Begins the interactive version of the audit. While computations for different audits will
vary, the process for executing each one is the same. This provides a process for selecting
a sample size, determining if the ballots found for the reported winner in that sample
size meet the stopping condition(s), and if not continuing with the audit. As the audit
proceeds, data including round sizes, ballots for the winner in each round size, and per
round risk and stopping probability are stored.

	
_reset(self)

	Reset attributes modified during run().

	
abstract get_min_sample_size(self, sub_audit: PairwiseAudit)

	Get the minimum valid sample size in a sub audit

	Parameters

	sub_audit (PairwiseAudit) – Get minimum sample size for this sub_audit.

	
abstract next_sample_size(self, *args, **kwargs)

	Generate estimates of possible next sample sizes.

Note: To be used during live/interactive audit execution.

	
stopping_condition(self, verbose: bool = False) → bool

	Determine if the audits stopping condition has been met.

The audit stopping condition is met if and only if each pairwise stopping condition
is met.

	
abstract stopping_condition_pairwise(self, pair: str, verbose: bool = False) → bool

	Determine if pairwise subcontest meets stopping condition.

	Parameters

	pair (str) – Dictionary key referencing pairwise audit in audit’s sub_audits.

	Returns

	bool – If the pairwise subaudit has stopped.

	
next_min_winner_ballots(self, verbose: bool = False)

	Compute next stopping size of given (actual) sample sizes for all subaudits.

	
abstract next_min_winner_ballots_pairwise(self, sub_audit: PairwiseAudit) → int

	Compute next stopping size of given (actual) sample size for a subaudit.

	Parameters

	sub_audit (PairwiseAudit) – Compute next stopping size for this subaudit.

Note: To be used during live/interactive audit execution.

	
abstract compute_min_winner_ballots(self, sub_audit: PairwiseAudit, progress: bool = False, *args, **kwargs)

	Compute the stopping size(s) for any number of sample sizes for a given subaudit.

	
abstract compute_all_min_winner_ballots(self, sub_audit: PairwiseAudit, progress: bool = False, *args, **kwargs)

	Compute all stopping sizes from the minimum sample size on for a given subaudit.

	
abstract compute_risk(self, sub_audit: PairwiseAudit, *args, **kwargs)

	Compute the current risk level of a given subaudit.

	Returns

	Current risk level of the audit (as defined per audit implementation).

	
abstract get_risk_level(self, *args, **kwargs)

	Find the risk level of the audit, that is, the smallest risk limit for which the audit
as it has panned out would have already stopped.

	Returns

	float – Risk level of the realization of the audit.

r2b2.brla

Bayesian Risk-Limiting Audit module.

Module Contents

	
class r2b2.brla.BayesianRLA(alpha: float, max_fraction_to_draw: float, contest: r2b2.contest.Contest, reported_winner: str = None)

	Bases: r2b2.audit.Audit

Baysian Risk-Limiting Audit implementation.

A Bayesian Risk-Limit Audit implementation as defined by Vora, et. al. for auditing 2-candidate
plurality elections. For a given sample size, the audit software calculates a minimum number of
votes for the reported winner that must be found in the sample to stop the audit and confirm
the reported outcome.

	Variables

	
	alpha (float) – Risk limit. Alpha represents the chance, that given an incorrectly called
election, the audit will fail to force a full recount.

	max_fraction_to_draw (int) – The maximum total number of ballots auditors are willing to draw
during the course of the audit.

	rounds (List[int]) – The round sizes used during the audit.

	contest (Contest) – Contest to be audited.

	prior (np.ndarray) – Prior distribution for worst-case election.

Initialize a Bayesian RLA.

	
get_min_sample_size(self, sub_audit: r2b2.audit.PairwiseAudit)

	Get the minimum valid sample size in a sub audit

	Parameters

	sub_audit (PairwiseAudit) – Get minimum sample size for this sub_audit.

	
__str__(self)

	Human readable string (i.e. printable) representation of Audit class.

Note

Can (and perhaps should) be overwritten in subclass.

	
stopping_condition_pairwise(self, pair: str, verbose: bool = False) → bool

	Determine if pairwise subcontest meets stopping condition.

	Parameters

	pair (str) – Dictionary key referencing pairwise audit in audit’s sub_audits.

	Returns

	bool – If the pairwise subaudit has stopped.

	
next_min_winner_ballots_pairwise(self, sub_audit: r2b2.audit.PairwiseAudit, sample_size: int = 0) → int

	Compute the stopping size requirement for a given subaudit and round.

	Parameters

	
	sample_size (int) – Current round size, i.e. number of ballots to be sampled in round

	sub_audit (PairwiseAudit) – Pairwise subaudit to get stopping size requirement for.

	Returns

	int – The minimum number of votes cast for the reported winner in the current round
size in order to stop the audit during that round. If round size is invalid, -1.

	
compute_priors(self) → numpy.ndarray

	Compute prior distribution of worst case election for each pairwise subaudit.

	
compute_risk(self, sub_audit: r2b2.audit.PairwiseAudit, votes_for_winner: int = None, current_round: int = None, *args, **kwargs) → float

	Compute the risk level given current round size, votes for winner in sample, and subaudit.

The risk level is computed using the normalized product of the prior and posterior
distributions. The prior comes from compute_prior() and the posterior is the hypergeometric
distribution of finding votes_for_winner from a sample of size current_round taken from a
total size of contest_ballots. The risk is defined as the lower half of the distribution,
i.e. the portion of the distribution associated with an incorrectly reported outcome.

	Parameters

	
	sample (int) – Votes found for reported winner in current round size.

	current_round (int) – Current round size.

	sub_aduit (PairwiseAudit) – Subaudit to generate risk value.

	Returns

	float – Value for risk of given sample and round size.

	
next_sample_size(self)

	Generate estimates of possible next sample sizes.

Note: To be used during live/interactive audit execution.

	
compute_min_winner_ballots(self, sub_audit: r2b2.audit.PairwiseAudit, rounds: List[int], progress: bool = False, *args, **kwargs)

	Compute the minimum number of winner ballots for a list of round sizes.

Compute a list of minimum number of winner ballots that must be found in the
corresponding round (sample) sizes to meet the stopping condition.

	Parameters

	
	sub_audit (PairwiseAudit) – Subaudit specifying which pair of candidates to run for.

	rounds (List[int]) – List of round sizes.

	progress (bool) – If True, a progress bar will display.

	Returns

	List[int] – List of minimum winner ballots to meet the stopping conditions for each
round size in rounds.

	
compute_all_min_winner_ballots(self, sub_audit: r2b2.audit.PairwiseAudit, max_sample_size: int = None, progress: bool = False, *args, **kwargs)

	Compute the minimum winner ballots for all possible sample sizes.

	Parameters

	
	max_sample_size (int) – Optional. Set maximum sample size to generate stopping sizes up
to. If not provided the maximum sample size is determined by max_fraction_to_draw
and the total contest ballots.

	progress (bool) – If True, a progress bar will display.

	Returns

	List[int] –

	List of minimum winner ballots to meet the stopping condition for each round
	size in the range [min_sample_size, max_sample_size].

	
get_risk_level(self, *args, **kwargs)

	Find the risk level of the audit, that is, the smallest risk limit for which the audit
as it has panned out would have already stopped.

	Returns

	float – Risk level of the realization of the audit.

	
__repr__(self)

	String representation of Audit class.

Note

Can (and perhaps should) be overwritten in subclass.

	
current_dist_null(self)

	Update distribution_null for each sub audit for current round.

	
_current_dist_null_pairwise(self, sub_audit: PairwiseAudit, bulk_use_round_size=False)

	Update distribution_null for a single PairwiseAudit

	Parameters

	
	sub_audit (PairwiseAudit) – Pairwise subaudit for which to update distribution.

	bulk_use_round_size (bool) – Optional argument used by bulk methods. Since the bulk
methods do not sample ballots for candidates during the rounds, this flag simply
uses the round schedule as the round draw (instead of the pairwise round draw)
for updating the distribution. Default is False.

	
current_dist_reported(self)

	Update distribution_reported_tally for each subaudit for current round.

	
_current_dist_reported_pairwise(self, sub_audit: PairwiseAudit, bulk_use_round_size=False)

	Update dist_reported for a single PairwiseAudit.

	Parameters

	
	sub_audit (PairwiseAudit) – Pairwise subaudit for which to update distriution.

	bulk_use_round_size (bool) – Optional argument used by bulk methods. Since the bulk
methods do not sample ballots for candidates during the rounds, this flag simply
uses the round schedule as the round draw (instead of the pairwise round draw)
for updating the distribution. Default is False.

	
truncate_dist_null(self)

	Update risk schedule and truncate null distribution for each subaudit.

	
_truncate_dist_null_pairwise(self, pair: str)

	Update risk schedule and truncate null distribution for a single subaudit.

	Parameters

	pair (str) – Dictionary key for subaudit (within the audit’s subaudits) to truncate
distribution and update risk schedule.

	
truncate_dist_reported(self)

	Update stopping prob schedule and truncate reported distribution for each subaudit.

	
_truncate_dist_reported_pairwise(self, pair)

	Update stopping prob schedule and truncate reported distribution for a single subaudit.

	Parameters

	pair (str) – Dictionary key for subaudit (within the audit’s subaudits) to truncate
distribution and update stopping prob schedule.

	
__get_interval(self, dist: List[float])

	Get relevant interval [l, u] of given distribution.

Find levels l and u such that cdf(l) < tolerance and 1 - cdf(u) < tolerance. The purpose of
this is to improve efficiency in the current_dist_* functions for audits without
replacement where almost all of the hypergeometric distribution falls in a fraction of its
range, i.e. between l and u.

Note

cdf() in this context does not require cdf(infinity) = 1, although the distribution
should sum very closely to 1.

	
asn(self, pair: str)

	Compute ASN as described in BRAVO paper for pair of candidates.

Given the fractional margin for the reported winner and the risk limit (alpha) produce the
average number of ballots sampled during the audit.

	Parameters

	pair (str) – Dictionary key referencing pairwise audit in audit’s subaudits.

	Returns

	int – ASN value.

	
execute_round(self, sample_size: int, sample: dict, verbose: bool = False) → bool

	Execute a single, non-interactive audit round.

Executes 1 round of the audit, given its current state. If the audit is stopped, its
state will not be modified.

	Warning: This method assumes the audit is in the correct state to be executed. If multiple
	executions of a full audit will be run the same audit object, make sure to call reset
on the audit object between full executions.

	Parameters

	
	sample_size (int) – Total ballots sampled by the end of this round (cumulative).

	sample (dict) – Sample counts for each candidate by the end of this round (cumulative).

	Returns

	bool – True if the audit met its stopping condition by this round.

	
run(self, verbose: bool = False)

	Begin interactive audit execution.

Begins the interactive version of the audit. While computations for different audits will
vary, the process for executing each one is the same. This provides a process for selecting
a sample size, determining if the ballots found for the reported winner in that sample
size meet the stopping condition(s), and if not continuing with the audit. As the audit
proceeds, data including round sizes, ballots for the winner in each round size, and per
round risk and stopping probability are stored.

	
_reset(self)

	Reset attributes modified during run().

	
stopping_condition(self, verbose: bool = False) → bool

	Determine if the audits stopping condition has been met.

The audit stopping condition is met if and only if each pairwise stopping condition
is met.

	
next_min_winner_ballots(self, verbose: bool = False)

	Compute next stopping size of given (actual) sample sizes for all subaudits.

r2b2.cli

R2B2’s command line interface offers significant out-of-the-box functionality with
respect to executing audits and generating audit data without requiring the user to
write a single line of Python.

Note

Why does this file exist, and why not put this in __main__?

You might be tempted to import things from __main__ later, but that will cause
problems: the code will get executed twice:

	When you run python -m r2b2 python will execute
__main__.py as a script. That means there won’t be any
r2b2.__main__ in sys.modules.

	When you import __main__ it will get executed again (as a module) because
there’s no r2b2.__main__ in sys.modules.

Also see (1) from http://click.pocoo.org/5/setuptools/#setuptools-integration

Module Contents

	
class r2b2.cli.IntList

	Bases: click.ParamType

Represents the type of a parameter. Validates and converts values
from the command line or Python into the correct type.

To implement a custom type, subclass and implement at least the
following:

	The name class attribute must be set.

	Calling an instance of the type with None must return
None. This is already implemented by default.

	convert() must convert string values to the correct type.

	convert() must accept values that are already the correct
type.

	It must be able to convert a value if the ctx and param
arguments are None. This can occur when converting prompt
input.

	
convert(self, value, param, ctx)

	Convert the value to the correct type. This is not called if
the value is None (the missing value).

This must accept string values from the command line, as well as
values that are already the correct type. It may also convert
other compatible types.

The param and ctx arguments may be None in certain
situations, such as when converting prompt input.

If the value cannot be converted, call fail() with a
descriptive message.

	Parameters

	
	value – The value to convert.

	param – The parameter that is using this type to convert
its value. May be None.

	ctx – The current context that arrived at this value. May
be None.

	
to_info_dict(self) → Dict[str, Any]

	Gather information that could be useful for a tool generating
user-facing documentation.

Use click.Context.to_info_dict() to traverse the entire
CLI structure.

New in version 8.0.

	
get_metavar(self, param: click.core.Parameter) → Optional[str]

	Returns the metavar default for this param if it provides one.

	
get_missing_message(self, param: click.core.Parameter) → Optional[str]

	Optionally might return extra information about a missing
parameter.

New in version 2.0.

	
split_envvar_value(self, rv: str) → Sequence[str]

	Given a value from an environment variable this splits it up
into small chunks depending on the defined envvar list splitter.

If the splitter is set to None, which means that whitespace splits,
then leading and trailing whitespace is ignored. Otherwise, leading
and trailing splitters usually lead to empty items being included.

	
fail(self, message: str, param: Optional[click.core.Parameter] = None, ctx: Optional[click.core.Context] = None) → NoReturn

	Helper method to fail with an invalid value message.

	
shell_complete(self, ctx: click.core.Context, param: click.core.Parameter, incomplete: str) → List[click.shell_completion.CompletionItem]

	Return a list of
CompletionItem objects for the
incomplete value. Most types do not provide completions, but
some do, and this allows custom types to provide custom
completions as well.

	Parameters

	
	ctx – Invocation context for this command.

	param – The parameter that is requesting completion.

	incomplete – Value being completed. May be empty.

New in version 8.0.

	
r2b2.cli.interactive(election_mode, election_file, contest_file, audit_type, risk_limit, max_fraction_to_draw, verbose)

	Executes an audit round by round.

Depending on what options are passed to the interactive command, users may be prompted for
contest results, audit type, risk limit, and/or maximum fraction of contest ballots to draw
when initializing the contest and audit to run.

During execution, users will enter each round
size and results of the round’s sample and subsequently receive information about the current
state of the audit. The process continues until either the stopping conditions are met or the
audit reaches the maximum sample size.

For information on each option run

$ r2b2 interactive --help

Example

Contest results can be passed as a JSON file rather than entering the data through the
prompt:

$ r2b2 interactive --contest-file example_contest.json

Tip

To generate a template contest JSON file run:

$ r2b2 template contest

Example

Audit parameters can be passed in as options rather than entering through the prompt:

$ r2b2 interactive --audit-type brla --risk-limit 0.1 --max-fraction-to-draw 0.2
$ r2b2 interactive -a brla -r 0.1 -m 0.2 // Shortened equivalent

Example

Election mode allows users to enter all the results from an election then select a contest
from the election to audit:

$ r2b2 interactive -e
$ r2b2 interactive -e --election-file // pass election results as JSON file.

Warning

Election mode simply allows you to enter an entire election’s data, then select one
one contest from that election to run. Auditing multiple contests from an election
concurrently is not implemented.

	
r2b2.cli.bulk(audit_type, risk_limit, max_fraction_to_draw, contest_file, output, round_list, full_audit_limit, pair, verbose)

	Bulk auditing mode generates stopping sizes for a given fixed round schedule.

Either provide a list of round sizes for which to generate stopping sizes or
generate a ballot by ballot list of stopping sizes from the minimum valid sample
size to the default maximum sample size or a specified maximum sample size.

	Parameters

	
	contest_file – Contest results as JSON file.

	audit_type – Which audit type to use to generate stopping sizes.

	risk_limit – Risk limit (alpha) of audit.

	max_fraction_to_draw – Maximum fraction of contest ballots that could be drawm during
the audit. Sets the default maximum size of the ballot by ballot output.

Tip

To generate a template contest JSON file, run:

$ r2b2 template contest

	Returns

	Formatted list of rounds and their associated stopping sizes. Default execution is
ballot by ballot from minimum valid sample size to the maximum sample size of audit.

Example

To generate stopping sizes for a specific set of round sizes, provide the round sizes
as a space separated list of integers enclosed by quotes using the round list option:

$ r2b2 bulk -l '100 200 300' contest.json brla 0.1 0.5

Example

To generate a ballot by ballot result from the minimum valid sample size to a specific
maximum (i.e. not the maximum fraction to draw of the audit), run:

$ r2b2 bulk -f 221 contest.json brla 0.1 0.5

Example

To write the results to a file instead of to stdout, run:

$ r2b2 bulk -o output.txt contest.json brla 0.1 0.5

Tip

Generating large or compute heavy data sets can take some time. To estimate run times,
use the verbose flag to display a progress bar:

$ r2b2 bulk -v contest.json brla 0.1 0.5

	
r2b2.cli.template(style, output)

	Generate JSON templates for possible input formats.

Example

To create a contest results JSON file, first generate the template as a new JSON file:

$ r2b2 template -o my_contest.json contest

Now the file my_contest.json will be created and contain:

{
 "contest_ballots" : 100,
 "tally" : {
 "CandidateA" : 50,
 "CandidateB" : 50
 },
 "num_winners" : 1,
 "reported_winners" : ["CandidateA"],
 "contest_type" : "PLURALITY"
}

Simply repopulate the fields with your contest results.

r2b2.contest

Contest module for handling individual contest data.

Module Contents

	
class r2b2.contest.ContestType

	Bases: enum.Enum

Enum indicating what type of vote variation was used in the contest.

	
__repr__(self)

	Return repr(self).

	
__str__(self)

	Return str(self).

	
__dir__(self)

	Default dir() implementation.

	
__format__(self, format_spec)

	Default object formatter.

	
__hash__(self)

	Return hash(self).

	
__reduce_ex__(self, proto)

	Helper for pickle.

	
name(self)

	The name of the Enum member.

	
value(self)

	The value of the Enum member.

	
classmethod _convert(cls, name, module, filter, source=None)

	Create a new Enum subclass that replaces a collection of global constants

	
class r2b2.contest.PairwiseContest(reported_winner: str, reported_loser: str, reported_winner_ballots: int, reported_loser_ballots: int)

	Simple 2-candidate, no irrelevant ballot sub contests of a Contest.

	
class r2b2.contest.Contest(contest_ballots: int, tally: Dict[str, int], num_winners: int, reported_winners: List[str], contest_type: ContestType)

	Contest information from a single contest within an Election.

	Variables

	
	contest_ballots (int) – Total number of ballots cast in the contest.

	irrelevant_ballots (int) – Number of ballots not attributed to a candidate in the tally.

	candidates (List[str]) – List of candidates in the contest sorted (descending) by tally.

	num_candidates (int) – Number of candidates in the contest.

	num_winners (int) – Number of winners desired from contest.

	reported_winners (List[str]) – Reported winners from contest. Must be candidates from list
of candidates, and length should match number of winners. Stored in same order as
sorted candidates.

	contest_type (ContestType) – What type of contest is this?

	tally (Dict[str, int]) – Reported tally from contest as a dictionary of candidates to
reported votes received.

	winner_prop (float) – Proportion of ballots cast for reported winner. Currently for first
winner listed in reported winners.

	sub_contests (Dict[str, Dict[str, List[int]]]) – Collection of pairwise sub-contests for
each (reported winner, candidate) pair where the reported winner has more than 50% of
the total sub-contest ballots, i.e. where the reported winner has a greater reported
tally than the other candidate. These pairs provide the two-candidate, no irrelevant
ballots assumption required by some audits.

	
__repr__(self)

	String representation of Contest class.

	
__str__(self)

	Human readable string representation of audit class.

	
to_json(self)

	Generate dict representation of Contest for use in a JSON file.

r2b2.election

Election module handles data associated with an Election or collection of Contests.

Module Contents

	
class r2b2.election.Election(name: str, total_ballots: int, contests: Dict[str, r2b2.contest.Contest])

	Election information extracted from reported results.

A class to encompass all data from an entire election. The election’s key data structue is a
list of Contest objects which hold the relevant data from each contest within the election.

	Variables

	
	name (str) – Election name.

	total_ballots (int) – Total ballots cast in entire election.

	contests (Dict[str, Contest]) – dict of contests within the election with names as keys.

	
__repr__(self)

	Return repr(self).

	
__str__(self)

	Return str(self).

r2b2.minerva

Minerva audit module.

Module Contents

	
class r2b2.minerva.Minerva(alpha: float, max_fraction_to_draw: float, contest: r2b2.contest.Contest)

	Bases: r2b2.audit.Audit

Minerva audit implementation.

A Minerva audit is a type of risk-limiting audit that accounts for round-by-round auditor
decisions. For a given sample size (in the context of a round schedule), the audit software
calculates a minimum number of votes for the reported winner that must be found in the sample
to stop the audit and confirm the reported outcome.

	Variables

	
	alpha (float) – Risk limit. Alpha represents the chance that, given an incorrectly called
election, the audit will fail to force a full recount.

	max_fraction_to_draw (float) – The maximum number of ballots the auditors are willing to draw
as a fraction of the ballots in the contest.

	contest (Contest) – Contest to be audited.

Initialize a Minerva audit.

	
get_min_sample_size(self, sub_audit: r2b2.audit.PairwiseAudit, min_sprob: float = 10 ** - 6)

	Computes the minimum sample size that has a stopping size (kmin). Here we find a
practical minimum instead of the theoretical minimum (BRAVO’s minimum) to avoid
floating-point imprecisions in the later convolution process.

	Parameters

	
	sub_audit (PairwiseAudit) – Get minimum sample size for this subaudit.

	min_sprob (float) – Round sizes with below min_sprob stopping probability are excluded.

	Returns

	int – The minimum sample size of the audit, adherent to the min_sprob.

	
satisfactory_sample_size(self, left, right, sprob, num_dist, denom_dist)

	Helper method that returns True if the round size satisfies the stopping probability.

	
kmin_search_upper_bound(self, n, sub_audit: r2b2.audit.PairwiseAudit)

	The Minerva kmin is no greater than the BRAVO kmin, so the latter serves
as an upper bound for a kmin binary search.

(Solve for k: (p/.5)^k * ((1-p)/.5)^(n-k) > 1/alpha)

	
sample_size_kmin(self, left, right, num_dist, denom_dist, sum_num_right, sum_denom_right, orig_right)

	Finds a kmin with a binary search given the twin distributions.

	
find_sprob(self, n, sub_audit: r2b2.audit.PairwiseAudit)

	Helper method to find the stopping probability of a given prospective round size.

	
binary_search_estimate(self, left, right, sprob, sub_audit: r2b2.audit.PairwiseAudit)

	Method to use binary search approximation to find a round size estimate.

	
next_sample_size_gaussian(self, sprob=0.9)

	This is a rougher but quicker round size estimate for very narrow margins.

	
next_sample_size(self, sprob=0.9, verbose=False, *args, **kwargs)

	Attempt to find a next sample size estimate no greater than 10000.
Failing that, try to find an estimate no greater than 20000, and so on.

	Parameters

	
	sprob (float) – Compute next sample for this stopping probability.

	verbose (bool) – If true, the kmin and stopping probability of the next sample size will
be returned in addition to the next sample size itself.

	Returns

	
	Return maxmimum next sample size estimate across all pairwise subaudits. If verbose,
	return information as specified above.

	
_next_sample_size_pairwise(self, sub_audit: r2b2.audit.PairwiseAudit, sprob=0.9)

	Compute next sample size for a single pairwise subaudit.

	Parameters

	
	sub_audit (PairwiseAudit) – Compute the sample size for this sub_audit.

	sprob (float) – Get the sample size for this stopping probability.

	Returns

	Estimate in the format [sample size, kmin, stopping probability].

	
stopping_condition_pairwise(self, pair: str, verbose: bool = False) → bool

	Check, without finding the kmin, whether the subaudit is complete.

	Parameters

	pair (str) – Dictionary key referencing pairwise subaudit to evaluate.

	Returns

	bool – Whether or not the pairwise stopping condition has been met.

	
next_min_winner_ballots_pairwise(self, sub_audit: r2b2.audit.PairwiseAudit) → int

	Compute stopping size for a given subaudit.

	Parameters

	sub_audit (PairwiseAudit) – Compute next stopping size for this subaudit.

	Returns

	int – Stopping size for most recent round.

	
compute_min_winner_ballots(self, sub_audit: r2b2.audit.PairwiseAudit, rounds: List[int], *args, **kwargs)

	Compute the minimum number of winner ballots for a round schedule of a pairwise audit.

Extend the audit’s round schedule with the passed (partial) round schedule, and then extend
the audit’s minimum number of winner ballots schedule with the corresponding minimums to
meet the stopping condition.

	Parameters

	
	sub_audit (PairwiseAudit) – Compute minimum winner ballots for this Pairwise subaudit.

	rounds (List[int]) – A (partial) round schedule of the audit.

	
find_kmin(self, sub_audit: r2b2.audit.PairwiseAudit, sample_size: int, append: bool)

	Search for a kmin (minimum number of winner ballots) satisfying all stopping criteria.

	Parameters

	
	sub_audit (PairwiseAudit) – Find kmin for this subaudit.

	sample_size (int) – Sample size to find kmin for.

	append (bool) – Optionally append the kmins to the min_winner_ballots list. This may
not always be desirable here because, for example, appending happens automatically
outside this method during an interactive audit.

	
compute_all_min_winner_ballots(self, sub_audit: r2b2.audit.PairwiseAudit, max_sample_size: int = None, *args, **kwargs)

	Compute the minimum number of winner ballots for the complete (that is, ballot-by-ballot)
round schedule.

	Note: Due to limited convolutional precision, results may be off somewhat after the
	stopping probability very nearly equals 1.

	Parameters

	
	sub_audit (PairwiseAudit) – Compute minimum winner ballots for this pairwise subaudit.

	max_sample_size (int) – Optionally set the maximum sample size to generate stopping sizes
(kmins) up to. If not provided the maximum sample size is determined by max_frac_to_draw
and the total contest ballots.

	Returns

	None, kmins are appended to the min_winner_ballots list.

	
compute_risk(self, votes_for_winner: int, pair: str, *args, **kwargs)

	Return the hypothetical pvalue if votes_for_winner were obtained in the most recent
round.

	
get_risk_level(self)

	Return the risk level of an interactive Minerva audit.

Non-interactive and bulk Minerva audits are not considered here since the sampled number of
reported winner ballots is not available.

	
__repr__(self)

	String representation of Audit class.

Note

Can (and perhaps should) be overwritten in subclass.

	
__str__(self)

	Human readable string (i.e. printable) representation of Audit class.

Note

Can (and perhaps should) be overwritten in subclass.

	
current_dist_null(self)

	Update distribution_null for each sub audit for current round.

	
_current_dist_null_pairwise(self, sub_audit: PairwiseAudit, bulk_use_round_size=False)

	Update distribution_null for a single PairwiseAudit

	Parameters

	
	sub_audit (PairwiseAudit) – Pairwise subaudit for which to update distribution.

	bulk_use_round_size (bool) – Optional argument used by bulk methods. Since the bulk
methods do not sample ballots for candidates during the rounds, this flag simply
uses the round schedule as the round draw (instead of the pairwise round draw)
for updating the distribution. Default is False.

	
current_dist_reported(self)

	Update distribution_reported_tally for each subaudit for current round.

	
_current_dist_reported_pairwise(self, sub_audit: PairwiseAudit, bulk_use_round_size=False)

	Update dist_reported for a single PairwiseAudit.

	Parameters

	
	sub_audit (PairwiseAudit) – Pairwise subaudit for which to update distriution.

	bulk_use_round_size (bool) – Optional argument used by bulk methods. Since the bulk
methods do not sample ballots for candidates during the rounds, this flag simply
uses the round schedule as the round draw (instead of the pairwise round draw)
for updating the distribution. Default is False.

	
truncate_dist_null(self)

	Update risk schedule and truncate null distribution for each subaudit.

	
_truncate_dist_null_pairwise(self, pair: str)

	Update risk schedule and truncate null distribution for a single subaudit.

	Parameters

	pair (str) – Dictionary key for subaudit (within the audit’s subaudits) to truncate
distribution and update risk schedule.

	
truncate_dist_reported(self)

	Update stopping prob schedule and truncate reported distribution for each subaudit.

	
_truncate_dist_reported_pairwise(self, pair)

	Update stopping prob schedule and truncate reported distribution for a single subaudit.

	Parameters

	pair (str) – Dictionary key for subaudit (within the audit’s subaudits) to truncate
distribution and update stopping prob schedule.

	
__get_interval(self, dist: List[float])

	Get relevant interval [l, u] of given distribution.

Find levels l and u such that cdf(l) < tolerance and 1 - cdf(u) < tolerance. The purpose of
this is to improve efficiency in the current_dist_* functions for audits without
replacement where almost all of the hypergeometric distribution falls in a fraction of its
range, i.e. between l and u.

Note

cdf() in this context does not require cdf(infinity) = 1, although the distribution
should sum very closely to 1.

	
asn(self, pair: str)

	Compute ASN as described in BRAVO paper for pair of candidates.

Given the fractional margin for the reported winner and the risk limit (alpha) produce the
average number of ballots sampled during the audit.

	Parameters

	pair (str) – Dictionary key referencing pairwise audit in audit’s subaudits.

	Returns

	int – ASN value.

	
execute_round(self, sample_size: int, sample: dict, verbose: bool = False) → bool

	Execute a single, non-interactive audit round.

Executes 1 round of the audit, given its current state. If the audit is stopped, its
state will not be modified.

	Warning: This method assumes the audit is in the correct state to be executed. If multiple
	executions of a full audit will be run the same audit object, make sure to call reset
on the audit object between full executions.

	Parameters

	
	sample_size (int) – Total ballots sampled by the end of this round (cumulative).

	sample (dict) – Sample counts for each candidate by the end of this round (cumulative).

	Returns

	bool – True if the audit met its stopping condition by this round.

	
run(self, verbose: bool = False)

	Begin interactive audit execution.

Begins the interactive version of the audit. While computations for different audits will
vary, the process for executing each one is the same. This provides a process for selecting
a sample size, determining if the ballots found for the reported winner in that sample
size meet the stopping condition(s), and if not continuing with the audit. As the audit
proceeds, data including round sizes, ballots for the winner in each round size, and per
round risk and stopping probability are stored.

	
_reset(self)

	Reset attributes modified during run().

	
stopping_condition(self, verbose: bool = False) → bool

	Determine if the audits stopping condition has been met.

The audit stopping condition is met if and only if each pairwise stopping condition
is met.

	
next_min_winner_ballots(self, verbose: bool = False)

	Compute next stopping size of given (actual) sample sizes for all subaudits.

r2b2.simulator

R2B2 Simulation Module.

Module Contents

	
class r2b2.simulator.DBInterface(host='localhost', port=27017, name='r2b2', user='reader', pwd='icanread')

	Class for handling MongoDB operations.

	
audit_lookup(self, audit_type: str, alpha: float, qapp: dict = None, *args, **kwargs)

	Find/Create an audit in database.

Searches through database for an existing audit entry with the given parameters.
If none exists, an audit entry is created for the parameters.

	Parameters

	
	audit_type (str) – Name of audit, for example: ‘minerva’, ‘brla’, etc.

	alpha (float) – Risk-limit of audit.

	qapp (dict) – Optional parameter that appends dict to mongo query.

	Returns

	ObjectID of new or existing audit entry.

	
contest_lookup(self, contest: r2b2.contest.Contest, qapp: dict = None, *args, **kwargs)

	Find/Create a contest in database.

Searches through database for an existing contest entry with the given parameters.
If none exists, a contest entry is created.

	Parameters

	
	contest (r2b2.contest.Contest) – Contest with attributes to be used in the database query.

	qapp (dict) – Optional parameter that appends dict to mongo query.

	Returns

	ObjectID of new of existing contest entry.

	
simulation_lookup(self, audit, reported, underlying, invalid, qapp: dict = None, *args, **kwargs)

	Find/Create a simulation in database.

Searches through database for an existing simulation entry with the given parameters.
If none exists, a simulation entry is created.

	Parameters

	
	audit – ObjectID of audit entry (from audits collection) used in the simulation.

	reported – ObjectID of reported contest entry (from contests collection) used in the
simulation.

	underlying – Description of the underlying contest used in the simulation. Could be an
ObjectID from the contests table, could simply be a string indicating a tie,
depends on the specific simulation.

	qapp (dict) – Optional parameter that appends dict to mongo query.

	Returns

	ObjectID of new or existing simulation entry.

	
trial_lookup(self, sim_id, *args, **kwargs)

	Find all trials for a given simulation ObjectID

	
write_trial(self, entry)

	Write a trial document into the trials collection.

	
update_analysis(self, sim_id, entry)

	Update analysis in simulation document.

	
class r2b2.simulator.Simulation(audit_type: str, alpha: float, reported: r2b2.contest.Contest, underlying, invalid: bool, db_mode=True, db_host='localhost', db_port=27017, db_name='r2b2', user='reader', pwd='icanread', *args, **kwargs)

	Bases: abc.ABC

Abstract Base Class to define a simulation.

	Variables

	
	db_mode (bool) – Indicates if simulation is running in Database mode or local mode.

	audit_type (str) – Indicates what type of audit is simulated.

	alpha (float) – Risk-limit of simulation.

	audit_id (str) – ObjectID of audit entry from audits collection in MongoDB.

	reported (Contest) – Reported contest results that are audited during simulation.

	reported_id (str) – ObjectID of reported contest entry from contests collection in MongoDB.

	underlying (str) – Indicates the true underlying contest results ballots are drawn from
during the simulation. This might be an ObjectID similar to reported_id, it might be
a string simply indicating that the underlying distribution is a tie. This field is
specified by a specific simulation implementation.

	sim_id (str) – ObjectID of simulation from simulations collection in MongoDB defined by the
reported contest, underlying contest, and audit.

	trials – List of trials performed in run() method. Trials are dicts formatted for
JSON output or MongoDB document entry.

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

	
abstract trial(self, seed)

	Execute a single trial given a random seed.

	
abstract analyze(self, *args, **kwargs)

	Analyze the simulation trials.

	
r2b2.simulator.histogram(values: List, xlabel: str, bins='auto')

	Create a histogram for a given dataset.

Installation

At the command line:

pip install r2b2

You can also install the in-development version with:

pip install https://github.com/gwexploratoryaudits/r2b2/archive/master.zip

Usage

To use R2B2 in a project:

import r2b2

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/gwexploratoryaudits/r2b2/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

R2B2 could always use more documentation, whether as part of the
official R2B2 docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/gwexploratoryaudits/r2b2/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

For more specific development guidelines and standards see the
Design Guide [https://github.com/gwexploratoryaudits/r2b2/blob/master/docs/audit_design_guide.md].
For guidelines specific to developing a new audit see the
Audit Design Guide [https://github.com/gwexploratoryaudits/r2b2/blob/master/docs/audit_design_guide.md].

To set up r2b2 for local development:

	Fork r2b2 [https://github.com/gwexploratoryaudits/r2b2]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:gwexploratoryaudits/r2b2.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git commit
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/gwexploratoryaudits/r2b2/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	R2B2 Team

Changelog

0.1.0 (2020-02-11)

	skeleton via cookiecutter-pylibrary commit to master
Removed pypy builds, may want to add back for performance
Can add mac/osx builds later if desired

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 r2b2	

 	
 	
 r2b2.__main__	

 	
 	
 r2b2.athena	

 	
 	
 r2b2.audit	

 	
 	
 r2b2.brla	

 	
 	
 r2b2.cli	

 	
 	
 r2b2.contest	

 	
 	
 r2b2.election	

 	
 	
 r2b2.minerva	

 	
 	
 r2b2.simulation	

 	
 	
 r2b2.simulation.athena	

 	
 	
 r2b2.simulation.filip_athena	

 	
 	
 r2b2.simulation.minerva	

 	
 	
 r2b2.simulator	

 	
 	
 r2b2.tests	

 	
 	
 r2b2.tests.test_athena	

 	
 	
 r2b2.tests.test_audit	

 	
 	
 r2b2.tests.test_brla	

 	
 	
 r2b2.tests.test_cli	

 	
 	
 r2b2.tests.test_contest	

 	
 	
 r2b2.tests.test_election	

 	
 	
 r2b2.tests.test_filip_athena_sim	

 	
 	
 r2b2.tests.test_minerva	

 	
 	
 r2b2.tests.util	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__dir__() (r2b2.contest.ContestType method)

 	__format__() (r2b2.contest.ContestType method)

 	__get_interval() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	__hash__() (r2b2.contest.ContestType method)

 	__reduce_ex__() (r2b2.contest.ContestType method)

 	__repr__() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.audit.PairwiseAudit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.contest.Contest method)

 	(r2b2.contest.ContestType method)

 	(r2b2.election.Election method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	__str__() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.audit.PairwiseAudit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.contest.Contest method)

 	(r2b2.contest.ContestType method)

 	(r2b2.election.Election method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	
 	_convert() (r2b2.contest.ContestType class method)

 	_current_dist_null_pairwise() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	_current_dist_reported_pairwise() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	_next_sample_size_pairwise() (r2b2.minerva.Minerva method)

 	_reset() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	_truncate_dist_null_pairwise() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	_truncate_dist_reported_pairwise() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

A

 	
 	analyze() (r2b2.simulation.athena.AthenaOneRoundRisk method)

 	(r2b2.simulation.athena.AthenaOneRoundStoppingProb method)

 	(r2b2.simulation.filip_athena.FZMinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaOneRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaOneRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundStoppingProb method)

 	(r2b2.simulator.Simulation method)

 	
 	asn() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	Athena (class in r2b2.athena)

 	AthenaOneRoundRisk (class in r2b2.simulation.athena)

 	AthenaOneRoundStoppingProb (class in r2b2.simulation.athena)

 	Audit (class in r2b2.audit)

 	audit_lookup() (r2b2.simulator.DBInterface method)

B

 	
 	BayesianRLA (class in r2b2.brla)

 	
 	binary_search_estimate() (r2b2.minerva.Minerva method)

 	bulk() (in module r2b2.cli)

C

 	
 	compute_all_min_winner_ballots() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	compute_min_winner_ballots() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	compute_priors() (r2b2.brla.BayesianRLA method)

 	compute_risk() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	
 	Contest (class in r2b2.contest)

 	contest_lookup() (r2b2.simulator.DBInterface method)

 	ContestType (class in r2b2.contest)

 	convert() (r2b2.cli.IntList method)

 	current_dist_null() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	current_dist_reported() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

D

 	
 	DBInterface (class in r2b2.simulator)

E

 	
 	Election (class in r2b2.election)

 	execute_round() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

F

 	
 	fail() (r2b2.cli.IntList method)

 	find_kmin() (r2b2.athena.Athena method)

 	(r2b2.minerva.Minerva method)

 	
 	find_sprob() (r2b2.minerva.Minerva method)

 	FZMinervaOneRoundRisk (class in r2b2.simulation.filip_athena)

G

 	
 	generate_contest() (in module r2b2.tests.util)

 	generate_election() (in module r2b2.tests.util)

 	get_metavar() (r2b2.cli.IntList method)

 	get_min_sample_size() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	get_missing_message() (r2b2.cli.IntList method)

 	get_pair_str() (r2b2.audit.PairwiseAudit method)

 	get_risk_level() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	
 	get_seed() (r2b2.simulation.athena.AthenaOneRoundRisk method)

 	(r2b2.simulation.athena.AthenaOneRoundStoppingProb method)

 	(r2b2.simulation.filip_athena.FZMinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaOneRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaOneRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundStoppingProb method)

 	(r2b2.simulator.Simulation method)

H

 	
 	histogram() (in module r2b2.simulator)

I

 	
 	interactive() (in module r2b2.cli)

 	
 	IntList (class in r2b2.cli)

K

 	
 	kmin_search_upper_bound() (r2b2.minerva.Minerva method)

M

 	
 	Minerva (class in r2b2.minerva)

 	MinervaMultiRoundAlteredMargin (class in r2b2.simulation.minerva)

 	MinervaMultiRoundRisk (class in r2b2.simulation.minerva)

 	MinervaMultiRoundStoppingProb (class in r2b2.simulation.minerva)

 	MinervaOneRoundAlteredMargin (class in r2b2.simulation.minerva)

 	MinervaOneRoundRisk (class in r2b2.simulation.minerva)

 	MinervaOneRoundStoppingProb (class in r2b2.simulation.minerva)

 	MinervaRandomMultiRoundRisk (class in r2b2.simulation.minerva)

 	MinervaRandomMultiRoundStoppingProb (class in r2b2.simulation.minerva)

 	
 module

 	r2b2

 	r2b2.__main__

 	r2b2.athena

 	r2b2.audit

 	r2b2.brla

 	r2b2.cli

 	r2b2.contest

 	r2b2.election

 	r2b2.minerva

 	r2b2.simulation

 	r2b2.simulation.athena

 	r2b2.simulation.filip_athena

 	r2b2.simulation.minerva

 	r2b2.simulator

 	r2b2.tests

 	r2b2.tests.test_athena

 	r2b2.tests.test_audit

 	r2b2.tests.test_brla

 	r2b2.tests.test_cli

 	r2b2.tests.test_contest

 	r2b2.tests.test_election

 	r2b2.tests.test_filip_athena_sim

 	r2b2.tests.test_minerva

 	r2b2.tests.util

N

 	
 	name() (r2b2.contest.ContestType method)

 	next_min_winner_ballots() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	next_min_winner_ballots_pairwise() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	
 	next_sample_size() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	next_sample_size_gaussian() (r2b2.minerva.Minerva method)

O

 	
 	output() (r2b2.simulation.athena.AthenaOneRoundRisk method)

 	(r2b2.simulation.athena.AthenaOneRoundStoppingProb method)

 	(r2b2.simulation.filip_athena.FZMinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaOneRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaOneRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundStoppingProb method)

 	(r2b2.simulator.Simulation method)

 	
 	output_audit() (r2b2.simulation.athena.AthenaOneRoundRisk method)

 	(r2b2.simulation.athena.AthenaOneRoundStoppingProb method)

 	(r2b2.simulation.filip_athena.FZMinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaOneRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaOneRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundStoppingProb method)

 	(r2b2.simulator.Simulation method)

P

 	
 	PairwiseAudit (class in r2b2.audit)

 	PairwiseContest (class in r2b2.contest)

 	
 	parse_contest() (in module r2b2.tests.util)

 	parse_contest_list() (in module r2b2.tests.util)

 	parse_election() (in module r2b2.tests.util)

R

 	
 	
 r2b2

 	module

 	
 r2b2.__main__

 	module

 	
 r2b2.athena

 	module

 	
 r2b2.audit

 	module

 	
 r2b2.brla

 	module

 	
 r2b2.cli

 	module

 	
 r2b2.contest

 	module

 	
 r2b2.election

 	module

 	
 r2b2.minerva

 	module

 	
 r2b2.simulation

 	module

 	
 r2b2.simulation.athena

 	module

 	
 r2b2.simulation.filip_athena

 	module

 	
 r2b2.simulation.minerva

 	module

 	
 r2b2.simulator

 	module

 	
 r2b2.tests

 	module

 	
 r2b2.tests.test_athena

 	module

 	
 	
 r2b2.tests.test_audit

 	module

 	
 r2b2.tests.test_brla

 	module

 	
 r2b2.tests.test_cli

 	module

 	
 r2b2.tests.test_contest

 	module

 	
 r2b2.tests.test_election

 	module

 	
 r2b2.tests.test_filip_athena_sim

 	module

 	
 r2b2.tests.test_minerva

 	module

 	
 r2b2.tests.util

 	module

 	run() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.simulation.athena.AthenaOneRoundRisk method)

 	(r2b2.simulation.athena.AthenaOneRoundStoppingProb method)

 	(r2b2.simulation.filip_athena.FZMinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaOneRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaOneRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundStoppingProb method)

 	(r2b2.simulator.Simulation method)

 	(r2b2.tests.test_audit.SimpleAudit method)

S

 	
 	sample_size_kmin() (r2b2.minerva.Minerva method)

 	satisfactory_sample_size() (r2b2.athena.Athena method)

 	(r2b2.minerva.Minerva method)

 	shell_complete() (r2b2.cli.IntList method)

 	SimpleAudit (class in r2b2.tests.test_audit)

 	Simulation (class in r2b2.simulator)

 	simulation_lookup() (r2b2.simulator.DBInterface method)

 	split_envvar_value() (r2b2.cli.IntList method)

 	stopping_condition() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	
 	stopping_condition_pairwise() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

T

 	
 	template() (in module r2b2.cli)

 	test_bulk_min_to_max() (in module r2b2.tests.test_cli)

 	test_bulk_round_list() (in module r2b2.tests.test_cli)

 	test_initialization_errors() (in module r2b2.tests.test_audit)

 	(in module r2b2.tests.test_contest)

 	test_interactive_given_audit() (in module r2b2.tests.test_cli)

 	test_interactive_given_both() (in module r2b2.tests.test_cli)

 	test_interactive_given_contest() (in module r2b2.tests.test_cli)

 	test_interactive_multi_round() (in module r2b2.tests.test_cli)

 	test_interactive_simple() (in module r2b2.tests.test_cli)

 	test_repr() (in module r2b2.tests.test_contest)

 	test_simple_audit() (in module r2b2.tests.test_audit)

 	test_simple_audit_execute_rounds() (in module r2b2.tests.test_audit)

 	test_simple_audit_execution() (in module r2b2.tests.test_audit)

 	test_simple_contest() (in module r2b2.tests.test_contest)

 	test_sorting_tally() (in module r2b2.tests.test_contest)

 	test_str() (in module r2b2.tests.test_contest)

 	test_tempalte_election() (in module r2b2.tests.test_cli)

 	test_tempalte_election_output_file() (in module r2b2.tests.test_cli)

 	test_template_contest() (in module r2b2.tests.test_cli)

 	test_template_contest_output_file() (in module r2b2.tests.test_cli)

 	to_info_dict() (r2b2.cli.IntList method)

 	to_json() (r2b2.contest.Contest method)

 	
 	trial() (r2b2.simulation.athena.AthenaOneRoundRisk method)

 	(r2b2.simulation.athena.AthenaOneRoundStoppingProb method)

 	(r2b2.simulation.filip_athena.FZMinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaMultiRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaOneRoundAlteredMargin method)

 	(r2b2.simulation.minerva.MinervaOneRoundRisk method)

 	(r2b2.simulation.minerva.MinervaOneRoundStoppingProb method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundRisk method)

 	(r2b2.simulation.minerva.MinervaRandomMultiRoundStoppingProb method)

 	(r2b2.simulator.Simulation method)

 	trial_lookup() (r2b2.simulator.DBInterface method)

 	truncate_dist_null() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

 	truncate_dist_reported() (r2b2.athena.Athena method)

 	(r2b2.audit.Audit method)

 	(r2b2.brla.BayesianRLA method)

 	(r2b2.minerva.Minerva method)

 	(r2b2.tests.test_audit.SimpleAudit method)

U

 	
 	update_analysis() (r2b2.simulator.DBInterface method)

V

 	
 	value() (r2b2.contest.ContestType method)

W

 	
 	write_trial() (r2b2.simulator.DBInterface method)

r2b2.simulation.athena

Module Contents

	
class r2b2.simulation.athena.AthenaOneRoundRisk(alpha, delta, reported, sample_size, db_mode=True, db_host='localhost', db_name='r2b2', db_port=27017, user='writer', pwd='icanwrite', *args, **kwargs)

	Bases: r2b2.simulator.Simulation

Simulate a 1-round Athena audit for a given sample size to compute risk limit.

	
trial(self, seed)

	Execute a 1-round athena audit (using r2b2.athena.Athena)

	
analyze(self, verbose: bool = False, hist: bool = False)

	Analyze trials to get experimental risk.

	Parameters

	
	verbose (bool) – If true, analyze will print simulation analysis information.

	hist (bool) – If true, analyze will generate and display 2 histograms: winner
ballots found in the sample size and computed risk.

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

	
class r2b2.simulation.athena.AthenaOneRoundStoppingProb(alpha, delta, reported, sample_size, db_mode=True, db_host='localhost', db_name='r2b2', db_port=27017, user='writer', pwd='icanwrite', *args, **kwargs)

	Bases: r2b2.simulator.Simulation

Simulate a 1-round Athena audit for a given sample size to compute stopping probability.

	
trial(self, seed)

	Execute a 1-round athena audit (using r2b2.athena.Athena)

	
analyze(self, verbose: bool = False, hist: bool = False)

	Analyse trials to get experimental stopping probability

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

r2b2.simulation.minerva

Module Contents

	
class r2b2.simulation.minerva.MinervaOneRoundRisk(alpha, reported, sample_size, db_mode=True, db_host='localhost', db_name='r2b2', db_port=27017, user='writer', pwd='icanwrite', *args, **kwargs)

	Bases: r2b2.simulator.Simulation

Simulate a 1-round Minerva audit for a given sample size to compute risk limit.

	
trial(self, seed)

	Execute a 1-round minerva audit (using r2b2.minerva.Minerva)

	
analyze(self, verbose: bool = False, hist: bool = False)

	Analyze trials to get experimental risk.

	Parameters

	
	verbose (bool) – If true, analyze will print simulation analysis information.

	hist (bool) – If true, analyze will generate and display 2 histograms: winner
ballots found in the sample size and computed risk.

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

	
class r2b2.simulation.minerva.MinervaOneRoundStoppingProb(alpha, reported, sample_size, db_mode=True, db_host='localhost', db_name='r2b2', db_port=27017, user='writer', pwd='icanwrite', *args, **kwargs)

	Bases: r2b2.simulator.Simulation

Simulate a 1-round Minerva audit for a given sample size to compute stopping probability.

	
trial(self, seed)

	Execute a 1-round minerva audit.

	
analyze(self, verbose: bool = False, hist: bool = False)

	Analyse trials to get experimental stopping probability

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

	
class r2b2.simulation.minerva.MinervaOneRoundAlteredMargin(alpha, reported, underlying, underlying_margin, sample_size, db_mode=True, db_host='localhost', db_name='r2b2', db_port=27017, user='writer', pwd='icanwrite', *args, **kwargs)

	Bases: r2b2.simulator.Simulation

Simulate a 1-round Minerva audit for a given sample size with a correct outcome but incorrect reported margin

	
trial(self, seed)

	Execute a 1-round minerva audit.

	
analyze(self, verbose: bool = False, hist: bool = False)

	Analyse trials to get experimental stopping probability

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

	
class r2b2.simulation.minerva.MinervaMultiRoundStoppingProb(alpha, reported, max_rounds, sample_size=None, sample_mult=None, sample_sprob=None, db_mode=True, db_host='localhost', db_name='r2b2', db_port=27017, user='writer', pwd='icanwrite', *args, **kwargs)

	Bases: r2b2.simulator.Simulation

Simulate a multi-round Minerva audit.

If sample_sprob is provided, sample sizes to achieve a sample_sprob
probability of stopping will be computed and used. Otherwise,
the initial sample size, sample_size, is given as input and further sample
sizes are an additional (sample_mult) * (sample_size) ballots.
The audit executes until it stops or reaches the maximum number of rounds.

	
trial(self, seed)

	Execute a multiround minerva audit (using r2b2.minerva.Minerva)

	
analyze(self, verbose: bool = False, hist: bool = False)

	Analyze trials to get experimental stopping probability.

	Parameters

	
	verbose (bool) – If true, analyze will print simulation analysis information.

	hist (bool) – If true, analyze will generate and display 2 histograms: winner
ballots found in the sample size and computed stopping probability.

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

	
class r2b2.simulation.minerva.MinervaMultiRoundRisk(alpha, reported, max_rounds, sample_size=None, sample_mult=None, sample_sprob=None, db_mode=True, db_host='localhost', db_name='r2b2', db_port=27017, user='writer', pwd='icanwrite', *args, **kwargs)

	Bases: r2b2.simulator.Simulation

Simulate a multi-round Minerva audit.

If sample_sprob is provided, sample sizes to achieve a sample_sprob
probability of stopping will be computed and used. Otherwise,
the initial sample size, x, is given as input and further sample sizes are
an additional (sample_mult) * x ballots.
The audit executes until it stops or reaches the maximum number of rounds.

	
trial(self, seed)

	Execute a multiround minerva audit (using r2b2.minerva.Minerva)

	
analyze(self, verbose: bool = False, hist: bool = False)

	Analyze trials to get experimental risk.

	Parameters

	
	verbose (bool) – If true, analyze will print simulation analysis information.

	hist (bool) – If true, analyze will generate and display 2 histograms: winner
ballots found in the sample size and computed risk.

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

	
class r2b2.simulation.minerva.MinervaRandomMultiRoundRisk(alpha, reported, sample_size, max_rounds, db_mode=True, db_host='localhost', db_name='r2b2', db_port=27017, user='writer', pwd='icanwrite', *args, **kwargs)

	Bases: r2b2.simulator.Simulation

Simulate a multi-round Minerva audit for random subsequent sample sizes.

The initial sample size, x, is given as input and further sample sizes are
chosen randomly as an additioanl 0.5x to 1.5x ballots in the next round.
The audit executes until it stops or reaches the maximum number of rounds.

	
trial(self, seed)

	Execute a 1-round minerva audit (using r2b2.minerva.Minerva)

	
analyze(self, verbose: bool = False, hist: bool = False)

	Analyze trials to get experimental risk.

	Parameters

	
	verbose (bool) – If true, analyze will print simulation analysis information.

	hist (bool) – If true, analyze will generate and display 2 histograms: winner
ballots found in the sample size and computed risk.

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

	
class r2b2.simulation.minerva.MinervaRandomMultiRoundStoppingProb(alpha, reported, sample_size, max_rounds, db_mode=True, db_host='localhost', db_name='r2b2', db_port=27017, user='writer', pwd='icanwrite', *args, **kwargs)

	Bases: r2b2.simulator.Simulation

Simulate a multi-round Minerva audit for random subsequent sample sizes.

The initial sample size, x, is given as input and further sample sizes are
chosen randomly as an additioanl 0.5x to 1.5x ballots in the next round.
The audit executes until it stops or reaches the maximum number of rounds.

	
trial(self, seed)

	Execute a 1-round minerva audit (using r2b2.minerva.Minerva)

	
analyze(self, verbose: bool = False, hist: bool = False)

	Analyze trials to get experimental risk.

	Parameters

	
	verbose (bool) – If true, analyze will print simulation analysis information.

	hist (bool) – If true, analyze will generate and display 2 histograms: winner
ballots found in the sample size and computed risk.

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

	
class r2b2.simulation.minerva.MinervaMultiRoundAlteredMargin(alpha, reported, underlying, underlying_margin, sample_size, max_rounds, db_mode=True, db_host='localhost', db_name='r2b2', db_port=27017, user='writer', pwd='icanwrite', *args, **kwargs)

	Bases: r2b2.simulator.Simulation

Simulate a Minerva audit for a given sample size with a correct outcome but incorrect reported margin

	
trial(self, seed)

	Execute a multiround minerva audit.

	
analyze(self, verbose: bool = False, hist: bool = False)

	Analyse trials to get experimental stopping probability

	
run(self, n: int)

	Execute n trials of the simulation.

Executes n simulation trials by generating a random seed, running a trial with the given
seed, and writing the trial entry to the trials collection.

	Parameters

	n (int) – Number of trials to execute and write to database.

	
get_seed(self)

	Generate a random seed.

Note

This method generates 8 random bytes using os sources of randomness. If a different
source of randomness is desired, overwrite the method per implementation.

	
output(self, fd: str = None)

	Write output of simulation to JSON file.

	Parameters

	fd (str) – filename to write output to. If no file is passed, formatted JSON is
simply printed.

	
output_audit(self)

	Create audit output in JSON format.

Note

This functionality is separated into a method so specific audit implementations may
override it and customize their output in non-database mode.

r2b2.tests

r2b2.tests.test_athena

r2b2.tests.test_audit

Module Contents

	
class r2b2.tests.test_audit.SimpleAudit(alpha: float, beta: float, max_fraction_to_draw: int, replacement: bool, contest: r2b2.contest.Contest)

	Bases: r2b2.audit.Audit

For testing purposes only.

Create an instance of an Audit.

Note

This should only be called when initializing a subclass as the Audit class is an
abstract class.

	
get_min_sample_size(self, sub_audit: r2b2.audit.PairwiseAudit)

	Get the minimum valid sample size in a sub audit

	Parameters

	sub_audit (PairwiseAudit) – Get minimum sample size for this sub_audit.

	
next_sample_size(self)

	Generate estimates of possible next sample sizes.

Note: To be used during live/interactive audit execution.

	
stopping_condition_pairwise(self, pair: str, verbose: bool) → bool

	Determine if pairwise subcontest meets stopping condition.

	Parameters

	pair (str) – Dictionary key referencing pairwise audit in audit’s sub_audits.

	Returns

	bool – If the pairwise subaudit has stopped.

	
next_min_winner_ballots_pairwise(self, sub_audit: r2b2.audit.PairwiseAudit)

	Compute next stopping size of given (actual) sample size for a subaudit.

	Parameters

	sub_audit (PairwiseAudit) – Compute next stopping size for this subaudit.

Note: To be used during live/interactive audit execution.

	
compute_risk(self, sub_audit: r2b2.audit.PairwiseAudit)

	Compute the current risk level of a given subaudit.

	Returns

	Current risk level of the audit (as defined per audit implementation).

	
compute_min_winner_ballots(self, sub_audit: r2b2.audit.PairwiseAudit)

	Compute the stopping size(s) for any number of sample sizes for a given subaudit.

	
compute_all_min_winner_ballots(self, sub_audit: r2b2.audit.PairwiseAudit)

	Compute all stopping sizes from the minimum sample size on for a given subaudit.

	
get_risk_level(self)

	Find the risk level of the audit, that is, the smallest risk limit for which the audit
as it has panned out would have already stopped.

	Returns

	float – Risk level of the realization of the audit.

	
__repr__(self)

	String representation of Audit class.

Note

Can (and perhaps should) be overwritten in subclass.

	
__str__(self)

	Human readable string (i.e. printable) representation of Audit class.

Note

Can (and perhaps should) be overwritten in subclass.

	
current_dist_null(self)

	Update distribution_null for each sub audit for current round.

	
_current_dist_null_pairwise(self, sub_audit: PairwiseAudit, bulk_use_round_size=False)

	Update distribution_null for a single PairwiseAudit

	Parameters

	
	sub_audit (PairwiseAudit) – Pairwise subaudit for which to update distribution.

	bulk_use_round_size (bool) – Optional argument used by bulk methods. Since the bulk
methods do not sample ballots for candidates during the rounds, this flag simply
uses the round schedule as the round draw (instead of the pairwise round draw)
for updating the distribution. Default is False.

	
current_dist_reported(self)

	Update distribution_reported_tally for each subaudit for current round.

	
_current_dist_reported_pairwise(self, sub_audit: PairwiseAudit, bulk_use_round_size=False)

	Update dist_reported for a single PairwiseAudit.

	Parameters

	
	sub_audit (PairwiseAudit) – Pairwise subaudit for which to update distriution.

	bulk_use_round_size (bool) – Optional argument used by bulk methods. Since the bulk
methods do not sample ballots for candidates during the rounds, this flag simply
uses the round schedule as the round draw (instead of the pairwise round draw)
for updating the distribution. Default is False.

	
truncate_dist_null(self)

	Update risk schedule and truncate null distribution for each subaudit.

	
_truncate_dist_null_pairwise(self, pair: str)

	Update risk schedule and truncate null distribution for a single subaudit.

	Parameters

	pair (str) – Dictionary key for subaudit (within the audit’s subaudits) to truncate
distribution and update risk schedule.

	
truncate_dist_reported(self)

	Update stopping prob schedule and truncate reported distribution for each subaudit.

	
_truncate_dist_reported_pairwise(self, pair)

	Update stopping prob schedule and truncate reported distribution for a single subaudit.

	Parameters

	pair (str) – Dictionary key for subaudit (within the audit’s subaudits) to truncate
distribution and update stopping prob schedule.

	
__get_interval(self, dist: List[float])

	Get relevant interval [l, u] of given distribution.

Find levels l and u such that cdf(l) < tolerance and 1 - cdf(u) < tolerance. The purpose of
this is to improve efficiency in the current_dist_* functions for audits without
replacement where almost all of the hypergeometric distribution falls in a fraction of its
range, i.e. between l and u.

Note

cdf() in this context does not require cdf(infinity) = 1, although the distribution
should sum very closely to 1.

	
asn(self, pair: str)

	Compute ASN as described in BRAVO paper for pair of candidates.

Given the fractional margin for the reported winner and the risk limit (alpha) produce the
average number of ballots sampled during the audit.

	Parameters

	pair (str) – Dictionary key referencing pairwise audit in audit’s subaudits.

	Returns

	int – ASN value.

	
execute_round(self, sample_size: int, sample: dict, verbose: bool = False) → bool

	Execute a single, non-interactive audit round.

Executes 1 round of the audit, given its current state. If the audit is stopped, its
state will not be modified.

	Warning: This method assumes the audit is in the correct state to be executed. If multiple
	executions of a full audit will be run the same audit object, make sure to call reset
on the audit object between full executions.

	Parameters

	
	sample_size (int) – Total ballots sampled by the end of this round (cumulative).

	sample (dict) – Sample counts for each candidate by the end of this round (cumulative).

	Returns

	bool – True if the audit met its stopping condition by this round.

	
run(self, verbose: bool = False)

	Begin interactive audit execution.

Begins the interactive version of the audit. While computations for different audits will
vary, the process for executing each one is the same. This provides a process for selecting
a sample size, determining if the ballots found for the reported winner in that sample
size meet the stopping condition(s), and if not continuing with the audit. As the audit
proceeds, data including round sizes, ballots for the winner in each round size, and per
round risk and stopping probability are stored.

	
_reset(self)

	Reset attributes modified during run().

	
stopping_condition(self, verbose: bool = False) → bool

	Determine if the audits stopping condition has been met.

The audit stopping condition is met if and only if each pairwise stopping condition
is met.

	
next_min_winner_ballots(self, verbose: bool = False)

	Compute next stopping size of given (actual) sample sizes for all subaudits.

	
r2b2.tests.test_audit.test_simple_audit()

	Tests creation of a basic Audit object.

	
r2b2.tests.test_audit.test_simple_audit_execution()

	Test basic properties of updating attributes.

	
r2b2.tests.test_audit.test_simple_audit_execute_rounds()

	Test execute_round method.

	
r2b2.tests.test_audit.test_initialization_errors()

	Tests exceptions are raised correctly by __init__().

r2b2.tests.test_brla

r2b2.tests.test_cli

Module Contents

	
r2b2.tests.test_cli.test_interactive_simple()

	Testing r2b2 interactive

Simple test of interactive module where contest and audit creation occur without error
The audit should run and stop in the first round.

	
r2b2.tests.test_cli.test_interactive_given_audit()

	Testing r2b2 interactive -a brla -r 0.1 -m 0.2

Test of interactive module where audit type, risk limit, and max fraction to draw are given
as cli option arguments. The audit should run and stop in the first round.

	
r2b2.tests.test_cli.test_interactive_given_contest()

	Testing r2b2 interactive –contest-file=/…/single_contest_template.json

Test of interactive module where contest is given as a JSON file and parsed into Contest object.
The audit should run and stop in the first round.

	
r2b2.tests.test_cli.test_interactive_given_both()

	Testng r2b2 interactive -a brla -r 0.1 -m 0.2 –contest-file=/…/single_contest_template.json

Test of interactive module where contest JSON file and audit parameters are given as cli
arguments. The audit should run and stop in the first round.

	
r2b2.tests.test_cli.test_interactive_multi_round()

	Testing r2b2 interactive -a blra -r 0.1 -m 0.1 –contest-file=/…/basic_contest.json

	
r2b2.tests.test_cli.test_bulk_min_to_max()

	Testing r2b2 bulk /…/single_contest_template.json brla -r 0.1 -m 0.4

	
r2b2.tests.test_cli.test_bulk_round_list()

	Testing `r2b2 bulk -l CandidateB -r ‘100 200 300’ /…/basic_contest.json brla 0.1 0.05 `

	
r2b2.tests.test_cli.test_template_contest()

	Testing r2b2 template contest

	
r2b2.tests.test_cli.test_tempalte_election()

	Testing r2b2 template election

	
r2b2.tests.test_cli.test_template_contest_output_file()

	Testing r2b2 template -o test_contest.json contest

	
r2b2.tests.test_cli.test_tempalte_election_output_file()

	Testing r2b2 template -o test_election.json election

r2b2.tests.test_contest

Module Contents

	
r2b2.tests.test_contest.test_simple_contest()

	Tests creation of a simple Contest object.

	
r2b2.tests.test_contest.test_sorting_tally()

	Tests creation of a contest will sort the candidate tally before storing.

	
r2b2.tests.test_contest.test_repr()

	Tests __repr__ function.

	
r2b2.tests.test_contest.test_str()

	Tests __str__ function.

	
r2b2.tests.test_contest.test_initialization_errors()

	Tests exceptions raised correctly by __init__().

r2b2.tests.test_election

r2b2.tests.test_filip_athena_sim

r2b2.tests.test_minerva

r2b2.tests.util

Module Contents

	
r2b2.tests.util.generate_contest(size)

	Generate a Contest with random data. For testing purposes only.

Note

Currently this only generates 2 candidate Plurality contests with 1 winner.

	
r2b2.tests.util.generate_election(max_size, max_contests=None)

	Generate an Election with random data. For testing purposes only.

	
r2b2.tests.util.parse_contest_list(json_file)

	Parse a list of Contests from a JSON file.

Note

Template for Contest format in JSON in contest_template.json

	
r2b2.tests.util.parse_contest(json_file)

	Parse a single Contest from a JSON file.

Note

Template for Contest format in JSON in single_contest_template.json

	
r2b2.tests.util.parse_election(json_file)

	Parse an Eleciton from a JSON file.

Note

Templace for Election JSON format in election_template.json

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 r2b2

 		
 Subpackages

 		
 r2b2.simulation

 		
 Submodules

 		
 r2b2.__main__

 		
 r2b2.athena

 		
 r2b2.audit

 		
 r2b2.brla

 		
 r2b2.cli

 		
 r2b2.contest

 		
 r2b2.election

 		
 r2b2.minerva

 		
 r2b2.simulator

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.1.0 (2020-02-11)

